Retep Tools
User Guide

Retep Development Group

Peter T Mount

Retep Tools

Retep Tools: User Guide

Retep Development Group
by Peter T Mount

2 Retep Tools

Retep Tools

T

able of Contents

=0 070 711 0] T 1
(@Y7 oY1= Y PPN 1

A 11 < 3
(@Y7 oY1= Y PPN 3

G T o 1= ox o -3 5
(@Y7 oY1= Y PPN 5

4. CONCUITENCY SUPPOIT ...ttt ettt ettt et e e et et et r et e et et et e e et e e et reean e eanaeees 7
(@Y7 oY1= Y PPN 7
LOcKiNg DY @NNOTELIONccuuueiiitie ettt ettt e e et e e e et e eeena e eeees 7
REAAWTITE IOCKS ..ottt aas 8

B BINCOTING ...ttt ettt e s 11
(@Y= oY1= AP 11

B. GFBIINICS ...ttt ettt et e e e 13
(@Y= oY1= AP 13

2 T o T PSP 15
(@Y= oY1= AP 15

G 7= = TP 17
(@Y= oY1= AP 17

LS = o PN 19
(@Y= oY1= AP 19

O 1 £ PP PP PPPPPT 21
(@Y= oY1= AP 21

T oo o 1o To PP PPT P PPPPT 23
(@Y= oY1= AP 23

D2 017 1 o TP 25
(@Y= oY1= AP 25

13. The Generic Messaging AP ... e 27
(@Y= oY1= AP 27

111 (0o (0 Tox o o [PPSR 27
1070001 o/ £ PP PP TP 27
AGUNESSING ..ttt ettt e e e ee 27
10701001070 01 0| AP PTPPN 28

ROULE ...t e e e 28

ROULET ...t e e e e 28

A SIMPIE BXAMPIE ... 28
Y20 [0 1= 28

IMIBSSAJE ...ttt e 28
10001001070 01 0| 1= TP PP 29

ROULEr @GN0 ROULE .. cvieiiiii et e e e e e e aeanas 31

DePIOY N0 RUN ...ttt e e et e e e e e e e 32

2 o o TP PP 35
(@Y7 oY1= AP 35

15. NioSax - a SAX style XML Push Parser for JavaNIOoiiiiiiiiiiiiiiiicieec e 37
(@Y7 oY1= AP 37

L0 LS T 0o A0 S v PP 37

= 0110 = PP PP PPPPPTI 37

G TR =00 00 N 41
(@Y7 oY1= AP 41

A 1 0o PSP PP PP 43
(@Y7 oY1= AP 43

L8, SN vt ettt ettt ettt ettt e e b 45

Retep Tools

(@Y V1= YT 45
e T = o TP 47
(@Y V1= YT 47
O T 1 - P S 49
(@Y V1= YT 49
2 T 43 | TP 51
(@Y V1= YT 51
R (== L = 111 = (o TSP 53
(@Y V1= YT 53
P =TS D I I o= = TR 55
B. The Apache Software License, VErSION L1cccuiiiiiiiiiiii e e e e e e e e 57
100 L= PP 59

iv Retep Tools

Retep Tools

List of Examples

4.1. Standard way t0 USe REAOWIITEL OCK'Scevueeiiiiii et 7
4.2. ReadWriteL ock's With juSt @8NNOLALIONSuiiiiiiiieiiii e e 9
4.3. ReadWriteL ock's with annotations and ReadWriteConcurrencySUpPOrtc..uvveveviinevennnnnn. 10
13.1. A simple Message implemeENtationooeuuuiiieiiee e 29
13.2. Simple MeSSaging COMPONENTeeertueeeeit e e eett e ettt e et ett e e eert e e eert e e eere e eeeranaeeeens 30
13.3. Simple MeSSaging COMPONENT'Suuueieitie ettt e et e et e et e et e e et e e e e et e e e enenaes 31
13.4. SIMPIE MESSAGING FOULEYeetneeeiti ettt ettt e et e et e e et e e et et e e et et e e e e et e e e eeranaes 32
13.5. DePloying OUr EXAMPIE .. .coeviee ittt 33
15.1. Starting @ NIOSBXPAISEYccuuuiiiiiiiiettei ettt e e e e e e 38
15.2. Passing content t0 @ NIOSBXPAISEYuuiiiiiiiieiiii ettt 38
15.3. ClOSING & NIOSAXPEISENeutuieiiiti ettt ettt ettt e et e e e et e e e et e e e ert e e eenbaaeees 39

Retep Tools

Vi

This page intentionally left blank

annotations

Chapter 1. annotations

Overview

Holder for annotations

Overview 1

annotations

2 This page intentionally left blank

cluster

Chapter 2. cluster

Overview

Holder for cluster

Overview 3

cluster

4 This page intentionally left blank

collections

Chapter 3. collections

Overview

Holder for collections

Overview 5

collections

6 This page intentionally left blank

Concurrency support

Chapter 4. Concurrency support

Overview

The retepTools library provides additional concurrency support to that provided by the
java.util.concurrency package of JDK 1.5 or later.

Locking by annotation

The core component of the concurrency support provided by retepTools is the locking. By utilising a set
of annotations, it is possible to mark a method so that the entire body of that method is bound to the scope
of that Lock.

For example, we have a bean with aproperty. The properties value can be read by any number of Threads,

but it can be set by only one at atime. Example 4.1, “ Standard way to use ReadWriteL ock's’ shows the
normal way you would write code to use a ReadWritelock:

Example 4.1. Standard way to use ReadWritelL ock's

i mport java.util.concurrent.|ocks. ReadWitelLock;
i mport java.util.concurrent.| ocks. Reentrant ReadWitelLock;

public class MyBean {
private final ReadWitelLock | ock = new Reentrant ReadWitelLock();

private int val ue;

public int getValue() {
| ock. readLock() .l ock();

try {
return val ue;
} finally {

| ock. readLock() . unl ock();

}

public void setValue(int newalue) {
l ock. writeLock().lock();

try {
val ue = newval ue;
} finally {

l ock. writeLock().unlock();

}

Now imagine doing that on an object with dozens of properties... alot of boiler plate code which is prone
to typing errors. retepTools removes this boiler plate code by using a set of thee annotations: @L ock,
@ReadLock and @WriteL ock.

Overview 7

Concurrency support

All three annotations follow a simple contract:

your object must implement a corresponding method for each annotation.
the associated method is named asit’s annotation, i.e. @ReadL ock expects readL ock(), etc.
that method must be declared either private or “protected final”.

the Lock object returned by those methods must also be final - specifically it must be the same object
returned for every invocation of that method on that instance.

ReadWrite locks

For convenience the class uk.org.retep.util.concurrent. ReadWriteConcurrencySupport implements this
contract for objects using @ReadL ock and @Writel ock.

So Example 4.2, “ReadWriteL ock's with just annotations’ shows the above code rewritten to use the
annotations:

Concurrency support

Concurrency support

Example 4.2. ReadWritelL ock'swith just annotations

i mport java.util.concurrent. | ocks. Lock;

i mport java.util.concurrent.| ocks. ReadWitelLock;

i mport java.util.concurrent.| ocks. Reentrant ReadWitelLock;
i mport j avax.annotati on. concurrent. ThreadSaf e;

i mport uk.org.retep.annotations. Contract;

i mport uk.org.retep.annotations. ReadLock;

i mport uk.org.retep.annotations. WitelLock;

@hr eadSaf e
public class MyBean {

private final ReadWitelLock | ock = new Reentrant ReadWitelLock();
private int val ue;

@ontract (ReadLock. cl ass)
protected final Lock readLock() {
return | ock.readLock();

}

@ontract (WitelLock.class)
protected final Lock witelLock() {
return | ock. witeLock();

}

@ReadLock
public int getValue() {
return val ue;

}

@Vitelock
public void setValue(int newal ue) {
val ue = newval ue;

}

Now thats alot cleaner, less error prone and yet easier to see what the businesslogic is rather than having
it obscured by the locking mechanism.

retepTools also provides several concrete base classes to make this even easier. The main one is
uk.org.retep.util.concurrent.ReadWriteConcurrency Support which provides concrete implementations of
readL ock() and writeL ock().

Example 4.1, “Standard way to use ReadWriteLock's” makes it even simpler by extending
ReadWriteConcurrency Support:

ReadWrite locks 9

Concurrency support

Example 4.3. ReadWriteLock's with annotations and
ReadWriteConcurrencySupport

i mport java.util.concurrent.|ocks. Lock

i mport java.util.concurrent.| ocks. ReadWitelLock;

i mport java.util.concurrent.| ocks. Reentrant ReadWitelLock;

i mport javax.annotation.concurrent. ThreadSaf e;

i mport uk.org.retep.annotations. ReadLock

i mport uk.org.retep.annotations. WitelLock;

i mport uk.org.retep.util.concurrent.ReadWiteConcurrencySupport;

@hr eadSaf e
public class MyBean
ext ends ReadW it eConcurrencySupport

{
private int val ue;
@readLock
public int getValue() {
return val ue;
}
@VitelLock
public void setValue(int newalue) {
val ue = newval ue;
}
}

Now thats alot cleaner, less error prone and yet easier to see what the businesslogic is rather than having
it obscured by the locking mechanism.

10 Concurrency support

encoding

Chapter 5. encoding

Overview

Holder for encoding

Overview 11

encoding

12 This page intentionally left blank

graphics

Chapter 6. graphics

Overview

Holder for graphics

Overview 13

graphics

14 This page intentionally left blank

Chapter 7. 10

Overview

Holder for io

Overview

15

16

This page intentionally left blank

j2ee

Chapter 8. |2ee

Overview

Holder for j2ee

Overview 17

j2ee

18 This page intentionally left blank

jaxb

Chapter 9. jaxb

Overview

Holder for jaxb

Overview

19

jaxb

20

This page intentionally left blank

jmx

Chapter 10. jmx

Overview

Holder for jmx

Overview 21

jmx

22 This page intentionally left blank

logging

Chapter 11. logging

Overview

Holder for logging

Overview 23

logging

24 This page intentionally left blank

math

Chapter 12. math

Overview

Holder for math

Overview 25

math

26 This page intentionally left blank

The Generic Messaging API

Chapter 13. The Generic Messaging

API

Overview

A common use case is the routing of messages from one component within a system to another. The
standard API for thistype of messaging within Javaisthe Java M essaging Service or IMS - but that can be
ahit overkill for small embedded systems or if you are implementing another existing messaging protocol
like Jabber. Originating from the retepXMPP project, retepTools 9.2 introduces a core messaging API
which can form the basis of many simple messaging systems.

Introduction

The Messaging APl is relativdly simple comprising of four man classes in the
uk.org.retep. util.messagi ng package:

» MessagingService - aclass that forms the entry point into a messaging system for messages

» Message - an interface defining the message that can be handled by the service

» Component - an interface defining a component that can accept messages

» Router - an interface defining a component that can route messages to another Router or component.

The API istotally generic so the above classes have no concept of the inplementation of an address (where
messages are sent to) or the route required to send them between Routers - this is left entirely to the
implementing code. The only requirement is that the implementing classes obey the contract between
hashCode and equals.

The API also provides some concrete implementations of the interfaces. These implementations are
themselves generic, but they are also fully concurrent alowing the implemented messaging system to
operate in a fully multi-threaded environment.

Therest of thisarticlewill show how to implement asimple messaging system whereagroup of interacting
components can pass messages comprising of simple POJO's between themselves.

Concepts

Addressing

The first concept within the Messaging APl is addressing. An address is a POJO that defines the
Component that the message should be sent to. It also defines where the message was sent from if a
responseisrequired. This POJO can be any Java object. For thisexamplewewill be using java.lang.String
but for more complex systems you would implement a class specifically for that purpose.

For example, in Jabber an addressis known asa JID (Jabber D) and has the form node@domain/resource
(where node and resource are optional). In retepX M PP the address is implemented by a JID class which
holds those three components individually allowing the messages to be routed by domain first and then
by node and finally by resource.

Overview

27

The Generic Messaging AP

Component

The second concept is a Component, represented by the Component interface. It represents a POJO that
can accept a Message for some form of processing.

Route

The third concept is a Route. A route is a POJO used by a Router to determine where to send messages.
Usually a Route implementation would hold the part of an address relevant to the specific Router using
it. You could think of the global Domain Name System (DNS). For DNS you could have an address of
"retep.org”. Then sending a messsage to that address would invove the core router using the Route "org"
to send the message to the router handling "org". That router wouild then send the message to the end
Component using the Route "retep”.

Router

The final concept is a Router. A Router, represented by the Router interface is a specialised Component
that can contain other Components. It deals with forwarding Message's to one or more Components by
using Route's.

A Simple example

To show how simple it is to setup a MessagingService, we'll create a simple system comprising of three
Components that will interact with each other when an event occurs. We'll call these components A, B
and C (yes imaginative naming here).

Address

For this example our addressisaj ava. | ang. St ri ng.

Message

Thefirst step isto create the message. Thiswill hold an int describing the event.

28 The Generic Messaging API

The Generic Messaging API

Example 13.1. A simple M essage implementation

package exanpl e;
i mport uk.org.retep.util.nmessagi ng. message. Abstract Message,;

public class Event
ext ends Abstract Message<Stri ng>

{
private int event;
public int getEvent()
{
return event;
}
public void setEvent(int event)
{
this.event = event;
}
}

AbstractMessage is a concrete implementation of the Message interface implementing all of it's methods.
The<St ri ng> generic defines the type of the address, inthiscase j ava. | ang. Stri ng.

Components

Now for our three components. Here component A will simply send a message to B when it's setValue()
method is called. B will log that event and forward the message to C. C will then log the event itself and
reply back to the originator (in this case A) with the negative value. A will then log the returned value.

Components 29

The Generic Messaging AP

Example 13.2. Simple messaging component

package exanpl e;

i mport j avax.annotati on. concurrent. ThreadSaf e;
i mport uk.org.retep.util.nessagi ng. MessageExcepti on;
i mport uk.org.retep.util.messagi ng. conponent . Abstract Conponent ;

@hr eadSaf e

public class A
ext ends Abstract Conponent<String, Event>

public void setValue(int value)

Systemout.printf("A setValue(%)\n", value);

event = new Event();

.setFrom("A");
.setTo("B");

set Event (val ue);

send(event);

cat ch(MessageException ex)

ex. print StackTrace();

public void consunme(Event message)
t hrows MessageExcepti on

Systemout.printf("A received event from%: %d\n",
nmessage. get From(),
nmessage. get Event ());

{
{
Event
event
event
event.
try
{
}
{
}
}
@verride
{
}
}

You'll notice that the setValue method creates a new Event, sets the from and to addresses, the vaue
of the event and then sends the message via the send() method. Once the Component is attached to the
M essagingSystem then that message will be sent on to its destination.

30

The Generic Messaging API

The Generic Messaging API

Example 13.3. Simple messaging component's

@hr eadSaf e
public class B
ext ends Abstract Conponent<String, Event>

{
@verride
public void consume(Event event)
t hrows MessageException
{
Systemout.printf("B received event from%: %\n",
event . get Fron(),
event.get Event ());
Event newEvent = new Event();
newEvent . set Fron{ event.getFronm());
newEvent . set To("C');
newEvent . set Event (event. getEvent());
send(newEvent);
}
}

@hr eadSaf e
public class C
ext ends Abstract Conponent<String, Event>

{
@verride
public void consunme(Event event)
t hrows MessageException
{
Systemout.printf("C received event from%: %\n",
event . get Fron(),
event.getEvent ());
Event newEvent = new Event();
newkEvent . set Fron("C');
newEvent . set To(event.getFron());
newEvent . set Event (-event.get Event());
send(newEvent);
}
}

Router and Route

Now every messaging service has a core router which accepts every message as it first enters the system.
For this example we'll use the address as the route as it's a single keyword:

Router and Route 31

The Generic Messaging AP

Example 13.4. Simple messaging router

package exanpl e;

i mport j avax.annotati on. concurrent. ThreadSaf e;
i mport uk.org.retep.util.messaging. router. AbstractRouter;

@hr eadSaf e
public class SinpleRouter
ext ends Abstract Router<String, String>

{
@verride
protected String getRoute(String to)
{
return to;
}
}

The Genericshere definethetypesfor the Address and the Route respectively. Now asweareusing String's
then both are set to String.

Our router implements the getRoute() method which should form the Route for this instance from the to
address. In this case it's just the address, but usually you would have some other logic here.

Deploy and Run

Now all there'sleft isto deploy the system and send a message:

32 The Generic Messaging API

The Generic Messaging API

Example 13.5. Deploying our example

package exanpl e;

i mport uk.org.retep.util.nessagi ng. Messagi ngServi ce;
i mport uk.org.retep.util.nessaging. Router
public class Min

{
private Min()
{
}
public static void main(String... args)
throws Exception
{
Router<String, String> router = new Sinpl eRouter();
Messagi ngServi ce<String, String> nessagingService =
new Messagi ngServi ce<String, String>(router);
A a = new A();
nessagi ngServi ce. addRoute("A", a);
nessagi ngServi ce. addRoute("B", new B());
nessagi ngServi ce. addRoute("C', new C());
nessagi ngServi ce. start Service();
a.setValue(42);
}
}

Here we create the core Router and then the MessagingService using that router. We then create the A
component and add it to the service. We then do the same for B and C. Finally we start the service, and
then set the value of A to 42. When run we should then see the following as the event propagates through
the system:

A. set Val ue(42)

B received event fromA: 42
C received event fromA: 42
A received event fromC. -42

Note: C saysit's received the event from A and not B because the event's from addressis A and not B -
thisis from the statement newEvent . set To(event. get From()); inB.

Now with thisexampleit's pretty simple. We could have started the service before adding the components
if we wanted to - components can be added or removed at will.

Also thisexampleisbad in the sense that we are adding all components directly to the MessagingService.

Thiswould be correct for components routed by the core route, but say we had arouter called D containing
a component called D/A - the component D/A would be attached to router D and D would be connected
to the messaging service.

Deploy and Run 33

The Generic Messaging API

34 This page intentionally left blank

nio

Chapter 14. nio

Overview

Holder for nio

Overview 35

nio

36 This page intentionally left blank

NioSax - a SAX style XML Push
Parser for JavaNIO

Chapter 15. NioSax - a SAX style XML
Push Parser for Java NIO

Overview

NioSax (pronounced “'Neo-Sax™) provides a Java NIO friendly XML push parser similar in operation to
SAX. Unlike SAX, with NioSax it is possible for the xml source to contain partial content (i.e. only part of
the XML stream has been received over the network). When this occurs, instead of failing with an error,
NioSax simply stops. As soon as your application receives more data you simply call the same instance
of the parser again and it will resume parsing where it left off.

The public API consists of the classes within this package, although the bare minimum required for use
are the NioSaxParser, NioSaxParserHandler and NioSaxSource classes.

Using NIOSax

To use NioSax you simply use NioSaxParserFactory to create a NioSaxParser, implement a SAX
ContentHandler and finally create a NioSaxSource which references the content.

Then you can parse one or more ByteBuffer's by updating the NioSaxSource with each buffer and pass it
to the NioSaxParser.parse(NioSaxSource) method.

The only other two things you must to do with the parser is to ensure that you call
NioSaxParser.startDocument() prior to any parsing, and call NioSaxParser.endDocument() once you are
done with the parser so any resources used can be cleaned up.

Example

Example 15.1, “ Starting a NioSaxParser” creates an NioSaxParser, sets the ContentHandler and stores it
somewhere so when you receive data from java nio:

Overview

37

NioSax - a SAX style XML Push
Parser for JavaNIO

Example 15.1. Starting a NioSaxPar ser

i mport java. ni o. Byt eBuffer;

i mport uk.org.retep.ni osax. Nl oSaxPar ser;

i mport uk.org.retep.ni osax. Nl oSaxPar ser Fact ory;
i mport uk.org.retep.ni osax. Nl oSaxPar ser Handl er;
i mport uk.org.retep.ni osax. Nl oSaxSour ce;

public class MyParser

{
private N oSaxParser parser;
private N oSaxParserHandl er handl er;
private N oSaxSource source;
public void start()
{
Ni oSaxPar ser Factory factory = N oSaxParserFactory. getlnstance();
parser = factory.new nstance();
par ser. set Handl er (handl er);
source = new Ni oSaxSource();
par ser. start Docunent () ;
}
}

Next, when you receive data from some nio source and have the datain a ByteBuffer you need to pass it
to the parser, as shown in Example 15.2, “Passing content to a NioSaxParser”:

Example 15.2. Passing content to a NioSaxPar ser

public void parse(ByteBuffer buffer)

{
/1 flip the buffer so the parser starts at the begi nning
buffer.flip();
/1 update the source (presum ng the buffer has changed)
source. set ByteBuffer(buffer);
/1 Parse the avail able content then conpact
par ser. parse(source);
sour ce. conpact () ;
}

Finally when you ae done (i.e. the connection has been closed) you then cal
NioSaxParser.endDocument():

NioSax - a SAX style XML Push
38 Parser for JavaNIO

NioSax - a SAX style XML Push
Parser for JavaNIO

Example 15.3. Closing a NioSaxPar ser

public void close()

{

/1 releases any resources and notifies the handler the docnent has conp
par ser. endDocunent () ;

Note: The above example presumes that the buffer you have received has its position set to the end of the
available content, so the flip() sets the limit to the end of the available data and the position to the start.

One the parser has run, we compact the buffer. This moves any remaining bytes to the beginning of the
buffer and sets the position to the end. This then allows you to add more data to the same buffer when
it arrives.

The reason for this is that, depending on the encoding of the document, you may have only part of a
character in the buffer. In this case the parser will stop at that point so when it resumes it carries on with
what should now be a complete character.

One last thing, if you know that you have the same ByteBuffer each time, then you can set it when you
create the NioSaxSource and not worry about updating it with every call to parse.

Example 39

NioSax - a SAX style XML Push
Parser for JavaNIO

40

This page intentionally left blank

random

Chapter 16. random

Overview

Holder for random

Overview 41

random

42

This page intentionally left blank

strings

Chapter 17. strings

Overview

Holder for strings

Overview 43

strings

44 This page intentionally left blank

swing

Chapter 18. swing

Overview

Holder for swing

Overview 45

swing

46 This page intentionally left blank

table

Chapter 19. table

Overview

Holder for table

Overview 47

table

48 This page intentionally left blank

trees

Chapter 20. trees

Overview

Holder for trees

Overview 49

trees

50 This page intentionally left blank

xml

Chapter 21. xml

Overview

Holder for xml

Overview

51

xml

52 This page intentionally left blank

test-framework

Chapter 22. test-framework

Overview

Holder for test-framework

Overview 53

test-framework

54 This page intentionally left blank

BSD License

Appendix A. BSD License

Copyright (c) 1998-2009, Peter T Mount, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

» Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

 Neither the name of the retep.org.uk nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

55

BSD License

56 This page intentionally left blank

The Apache Software License,
Version1.1

Appendix B. The Apache Software
License, Version 1.1

Copyright (c) 2001-2003 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowlegement:

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowlegement may appear in the software itself, if and wherever such third-party
acknowlegements normally appear.

4. Thenames"Ant" and "Apache Software Foundation" must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called "Apache’ nor may "Apache" appear in their
names without prior written permission of the Apache Group.

THIS SOFTWARE IS PROVIDED “AS 1S’ AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

57

The Apache Software License,
Version 1.1

58 This page intentionally left blank

Index

Index

Symbols
@Lock, 7
@ReadLock, 7
@WriteLock, 7

A

AbstractMessage, 29
annotations, 1-1

B
ByteBuffer, 37

C

cluster, 3-3
collections, 5-5
Component, 27
Concurrency, 7-10
ContentHandler, 37

E
encoding, 11-11

G
graphics, 13-13

I
io, 15-15

J
j2ee, 17-17

java.util.concurrency, 7

jaxb, 19-19
jmx, 21-21

L
logging, 23-23

M
math, 25-25

Message, 27
Messaging API, 27-33
MessagingService, 27

N
nio, 35-35

NioSax NIO XML Parser, 37-39

NioSaxParser, 37, 37

NioSaxParserFactory, 37

NioSaxSource, 37

R

random, 41-41
ReadWriteConcurrencySupport, 8
Router, 27

S
SAX Parser
NioSax NIO XML Parser, 37-39
strings, 43-43
swing, 45-45

T
table, 47-47
test-framework, 53-53
trees, 49-49

X
xml, 51-51
XML Parser
NioSax NIO XML Parser, 37-39

59

Index

60

This page intentionally left blank

	Retep Tools
	Table of Contents
	Chapter 1. annotations
	Overview

	Chapter 2. cluster
	Overview

	Chapter 3. collections
	Overview

	Chapter 4. Concurrency support
	Overview
	Locking by annotation
	ReadWrite locks

	Chapter 5. encoding
	Overview

	Chapter 6. graphics
	Overview

	Chapter 7. io
	Overview

	Chapter 8. j2ee
	Overview

	Chapter 9. jaxb
	Overview

	Chapter 10. jmx
	Overview

	Chapter 11. logging
	Overview

	Chapter 12. math
	Overview

	Chapter 13. The Generic Messaging API
	Overview
	Introduction
	Concepts
	Addressing
	Component
	Route
	Router

	A Simple example
	Address
	Message
	Components
	Router and Route
	Deploy and Run

	Chapter 14. nio
	Overview

	Chapter 15. NioSax - a SAX style XML Push Parser for Java NIO
	Overview
	Using NIOSax
	Example

	Chapter 16. random
	Overview

	Chapter 17. strings
	Overview

	Chapter 18. swing
	Overview

	Chapter 19. table
	Overview

	Chapter 20. trees
	Overview

	Chapter 21. xml
	Overview

	Chapter 22. test-framework
	Overview

	Appendix A. BSD License
	Appendix B. The Apache Software License, Version 1.1
	Index

